Structure Learning in Human Sequential Decision-Making

نویسندگان

  • Daniel E. Acuña
  • Paul R. Schrater
چکیده

Studies of sequential decision-making in humans frequently find suboptimal performance relative to an ideal actor that has perfect knowledge of the model of how rewards and events are generated in the environment. Rather than being suboptimal, we argue that the learning problem humans face is more complex, in that it also involves learning the structure of reward generation in the environment. We formulate the problem of structure learning in sequential decision tasks using Bayesian reinforcement learning, and show that learning the generative model for rewards qualitatively changes the behavior of an optimal learning agent. To test whether people exhibit structure learning, we performed experiments involving a mixture of one-armed and two-armed bandit reward models, where structure learning produces many of the qualitative behaviors deemed suboptimal in previous studies. Our results demonstrate humans can perform structure learning in a near-optimal manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence in a sequential two stages decision making process

We analyze a sequential decision making process, in which at each stepthe decision is made in two stages. In the rst stage a partially optimalaction is chosen, which allows the decision maker to learn how to improveit under the new environment. We show how inertia (cost of changing)may lead the process to converge to a routine where no further changesare made. We illustrate our scheme with some...

متن کامل

Investigating the Effect of Rewards on Individual Players' Efforts: A Behavioral Approach

The main goal of the study is to examine the effect of rewards on the behavior of players in a team activity. In this framework, by performing 12 sequential and simultaneous games in a laboratory environment examine the rewarding effect on players' behavior. Students from Yazd universities surveyed and the sample of 182 students is in the form of two groups, which collected in total for 2184 ma...

متن کامل

Are People Successful at Learning Sequential Decisions on a Perceptual Matching Task?

Sequential decision-making tasks are commonplace in our everyday lives. We report the results of an experiment in which human subjects were trained to perform a perceptual matching task, an instance of a sequential decision-making task. We use two benchmarks to evaluate the quality of subjects’ learning. One benchmark is based on optimal performance as defined by a dynamic programming procedure...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

What to Choose Next? A Paradigm for Testing Human Sequential Decision Making

Many of the decisions we make in our everyday lives are sequential and entail sparse rewards. While sequential decision-making has been extensively investigated in theory (e.g., by reinforcement learning models) there is no systematic experimental paradigm to test it. Here, we developed such a paradigm and investigated key components of reinforcement learning models: the eligibility trace (i.e....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2008